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Results are presented for unsteady laminar thermal convection in compressible 
fluids at  various reduced levels of gravity in a rectangular enclosure which is 
heated on one side and cooled on the opposite side. The results were obtained by 
solving numerically the equations of conservat,ion for a viscous, compressible, 
heat-conducting, ideal gas in the presence of a gravitational body force. The 
formulation differs from the Boussinesq simplification in that the effects of 
variable density are completely retained. A conservative, explicit, time- 
dependent, finite-difference technique was used and good agreement was found 
for the limited cases where direct comparison with previous investigations was 
possible. The solutions show that the thermally induced motion is acoustic in 
nature at low levels of gravity and that the unsteady-state rate of heat transfer 
is thereby greatly enhanced relative to pure conduction. The nonlinear variable 
density profile skews the streamlines towards the cooler walls but is shown to 
have little effect on the steady-state isotherms. 

1. Introduction 
In recent years finite-difference computation on a digital computer has been 

used successfully as a means of analysing and gaining insight into complex 
problems in many aspects of fluid mechanics. Our knowledge of natural convec- 
tion flows in particular has increased immensely because the nonlinear effects and 
coupled phenomena in this type of flow can now be analysed. Most analytical 
treatments of natural convection invoke the Boussinesq approximation, which 
neglects the effects of fluid compressibility other than in the generation of 
buoyancy forces. In  the weak gravitational field of space, convection due to 
buoyancy is virtually eliminated (Grodzka & Bannister 1972). The need then 
arises to assess the role of convective driving mechanisms other than gravity. The 
convection considered here in addition to that due to buoyancy is the pressure- 
driven convection which results when a confined compressibIe fluid is heated 
rapidly. This type of motion has been termed thermo-acoustic convection owing 
to the sonic character of the induced pressure waves. The objective of the present 
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investigation is to analyse thermal convection of a compressible fluid including 
the unsteady effects of pressure- and buoyancy-driven fluid motion. 

The literature on analysis of buoyancy-driven natural convection by numerical 
methods is too extensive to review here. Specific reference, however, will be made 
later to the work of Hellums & Churchill (1962), Wilkes & Churchill (1966), 
Torrance (1 968) and Torrance et ab. (1 972). Analytical studies of pressure-driven 
convection have received considerably less atttention. Harlow & Amsden (1971) 
made calculations for fluids of variable density but not for thermally induced 
wave motion. Trilling (1955), Knudsen (1957) and Luikov & Berkovsky (1970) 
were among the first to investigate analytically the wave motion induced in gases 
by boundary-temperature gradients. These investigators used a linear perturba- 
tion analysis and found that a sharp rise in boundary temperature can cause 
pressure waves to propagate through the fluid in much the same manner as 
pushing a piston through a gas-filled pipe. Larkin (1967) was apparently the first 
to use finite-difference methods to solve the equations of conservation for condi- 
tions leading to thermally induced acoustic waves. He considered one- 
dimensional motion of an ideal gas in a confined region at  zero gravity. His 
computations confirm the acoustic nature of the wave motion and indicate that 
the heat transfer and pressure rise are greatly enhanced over those in an analytical 
solution which neglects thermally induced fluid motion. Thuraisamy (1972) 
applied Larkin’s numerical method to analyse the flow of supercritical oxygen in 
spacecraft tanks. He used a one-dimensional model with zero gravity and success- 
fully simulated the thermally induced wave motion. Heinmiller (1970) used 
finite-difference methods to analyse the convective flow in spacecraft fuel tanks 
at  low gravity. His two-dimensional model, which includes a buoyancy force, 
variable density and real-fluid properties, was used to simulate pressure collapse 
phenomena in oxygen storage systems. Spradley et al. (1973) used a finite- 
difference method to compute thermo-acoustic convection in a confined ideal gas 
at  zero gravity. The results of their analysis indicate that pressure and thermal 
expansion effects can be significant factors in determining the motion and rate of 
heat transfer through confined fluids which are heated rapidly. A numerical 
algorithm using finite differences was developed for solving the differential 
equations for the conservation of mass, momentum and energy in compressible 
flow. A modified form of this algorithm was used in the present investigation to 
compute the two-dimensional flow of an ideal gas in a rectangular enclosure 
including both buoyancy and pressure effects. 

This paper is divided as follows. The mathematical formulation of the govern- 
ing equations, including the initial and boundary conditions and a dimensional 
analysis, is given in $ 2 .  A description of the finite-difference technique, the 
computation algorithm and the stability and conservational features constitutes 
$3. A discussion of illustrative calculations which have been carried out is 
presented in $ 4. 
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FIGURE 1. Geometric configuration and co-ordinate system. 

2. Mathematical formulation 
Consider a ‘two-dimensional ’ rectangular enclosure of length L and height H 

which contains compressible fluid as shown in figure 1. The fluid is initially 
motionless with a uniform temperature To. The upper and lower walls are 
perfectly insulated and the side walls are maintained at  temperatures TL and TR. 
The Eulerian formulation is adopted and a Cartesian co-ordinate system is used 
with the gravitational vector in the direction of the - y axis. Laminar flow and 
an ideal gas which is compressible, viscous and heat conducting are assumed. 
The thermal conductivity k, viscosity ,u and specific heat C, are assumed to be 
constant, but variations in density are taken into account. Kinetic energy, radia- 
tive transfer, internal heat sources and viscous dissipation of energy are neglected. 
Justification for the neglect of kinetic energy and viscous dissipation is provided 
at  the end of this section. The pressure is related to the density and temperature 
through the ideal-gas law. 

The independent variables are the spatial co-ordinates x and y and the time t .  
The problem can be described in terms of the following dependent variables: the 
velocity components (u, w) in the (x, y) directions, the density p, temperature T 
and pressure P. The governing equations are those for the conservation of 
momentum, mass and energy in the region, plus the ideal-gas law. These equa- 
tions, which are written in conservation-law or divergence form, are given below 
in terms of dimensionless variables. 

x momentum 

a2u) (1) 
ap i 4a2u 1 a2v 

ax Re ( 3ax2 3axay 
a a a - (pu) +- (puu) +- (puv) = -- +- -- +- - + 72- 
at ax a Y  a92 * 

y momentum 
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Continuity 
%+-(pu)+-(pv)  a a = 0. 

at ax aY 
Energy 

(3) 

Xtate P = p T .  

The initial and boundary conditions are expressed in dimensionless form as 

Initial conditions 
follows. 

U ( X ,  y ,  0) = V(X,Y, 0) = 0, T ( x , y ,  0 )  = 1, 

8% Y ,  0)laY = - Pr-'p(x, y, 01, Ax ,  y, 0) = P(X, 2/90). 

Boundary conditions 

I tc = 'u = 0 at all walls, 

T(0, y ,  t )  = TL, T(1, Y ,  t )  = TR, 
aT(x ,  0, $)lay = ~ T ( x ,  1, t) /ay = 0. 

The dimensionless variables are 

(7) 

where primes designate the original dimensional variables, 92 is the universal gas 
constant and M is the molecular weight of the gas. 

The dimensionless parameters in the governing equations are 

7 = L / H  (aspect ratio), 

y = Ck/CL (ratio of specific heats), 

Pr = yCi,u'/k' (Prandtl number), 

Re = pAL(WTA/ilf)4 (,u')-l 

Pr = 9TJHg 'M 

(acoustic Reynolds number), 

(acoustic Froude number). 

Additional dimensionless groups referred to later in the analysis are 

Re, = p'L Y'/,u' 

Nu  = h'L/lc' (Nusselt number). 

(flow Reynolds number), 

Gr = ph2g'P'(T(, - TX) L3/,uf2 (Grashof number), 

(9) 

The additional symbols used above are Y' ,  the maximum flow velocity, p', the 
volume coefficient of thermal expansion and h', the local heat-transfer coefficient. 

The classic approach to computation of natural convection is to invoke the 
Boussinesq approximation, introduce a stream function and write the governing 
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.t 

FIGERE 2. Cell-centred finite-difference grid. 0 ,  cell centre; x , cell boundary. 

equations in vorticity-stream-function form. This approach is not taken in the 
present analysis but rather solutions are obtained for the primitive variables 
[( 1)-(5)]. The initial formulation included both the kinetic energy and viscous 
dissipation terms in the energy equation. A numerical study was made of typica,l 
cases which included these effects or in which they were neglected one at a time. 
This study showed clearly that, for the conditions considered here, both effects 
are negligible. (Results of a portion of the study of the effect of viscous dissipation 
are given by Spradley et al. (1973).) Hence these terms were removed from the 
formulation to produce a more efficient computer code. The computations carried 
out included sufficient points within the boundary layer to justify the use of 
no-slip boundary conditions. 

3. Numerical method 
The numerical method employed in this analysis is based on explicit finite- 

difference approximations. The use of the unsteady equations allows a forward- 
time-marching algorithm to be used since the problem is of initial-value type. 
Values of the dependent variables are specified a t  time t = 0 a t  a finite number of 
discrete points on a numerical grid. The differential equations are approximated 
a t  these grid points by difference equations. The algorithm used here is based on 
a combination of techniqnes presented in the literature plus some innovations. 
A review of finite-difference approximations for natural convection is given by 
Torrance (1968). However, these techniques have been applied only to the quasi- 
incompressible equations resulting from the Boussinesq approximation. The 
finite-difference approximations used in the present study are patterned on 
method V of Torrance (1 968) with appropriate modification for compressibility. 
The technique is conditionally stable, free of a spatial mesh restriction and 
numerically conservative. 

The explicit approach chosen here requires smaller time steps to ensure 
numerical stability than an implicit formulation. However, an implicit method 
would require time steps of the same size in order to simulate the acoustic wave 
motion. Since i t  is the physical phenomena of acoustic waves that limits the time 
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step, rather than stability, an explicit approach is here more efficient than an 
implicit scheme. 

A cell-centred finite-difference grid (shown in figure 2) is used to write down the 
difference equations. All flow variables are evaluated a t  the centre of a cell and 
differences are taken across a cell using the known values in adjacent cells and/or 
interpolated values a t  the boundaries of the cells. The boundary conditions, how- 
ever, are specified a t  the walls themselves andnot a t  the centre of the cell adjacent 
to the wall. I n  the difference equations, the subscripts i a n d j  refer to spatial 
locations in the x and y directions respectively, and the superscript n denotes 
time, i.e. t = nAt. The grid points are thus defined as xi = (i- &)Ax, 
yj = (j  - 4) Ay. The grid spacings Ax and Ay are constant but not necessarily 
equal. 

Forward time differences are used to approximate the unsteady derivatives: 

[ l ~ f / X j $ + ~  N" ( f , , + I  - f$) /At ,  (10) 

where f represents any of the variables pu, p v ,  p and T .  This approach yields 
a finite-difference approximation which is of first order in time. 

The particular form of the space-difference operator depends on the type of 
term to which it is applied. There are basically four types of terms in the 
governing equations: first-order terms, second-order terms, cross-terms and con- 
vection terms. Many schemes were considered and tested. Table 1 summarizes the 
types of terms and shows the finite-difference approximations which were chosen. 
Centred differences were used except for the convection terms. A donor difference 
scheme is necessary for the convection terms in order to preserve numerical 
stability in the explicit approach as discussed by Hellums & Churchill (1962). 
The conservative donor method, which is patterned on Torrance's method V, 
was applied to all the convection terms in the momentum and energy equations. 

The donor operator is known to introduce a numerical diffusion effect owing 
to the first-order spatial truncation error. For certain types of flow, especially a t  
high Reynolds number, the magnitude of the numerical diffusion can be larger 
than the real diffusion. As pointed out by many investigators, including Torrance 
et al. (1972) and Harlow & Amsden (1971)) these fictitious effects can be reduced 
by refining the grid network or by using some other form of differencing such as 
the ZIP technique. The technique used here, commonly called the donor cell 
method, is preferred owing to the severity of the thermal boundary conditions, 
i.e. very rapid heating. The contributions of the numerical diffusion effects were 
tested by using refined grid spacings and found not to influence the solutions 
significantly. Particular note should be made of the convective difference 
operators in table 1. The function f is transported from cell to cell using the 
average velocity between the cells. It is this type of operator that leads to a high 
degree of conservation. Central differences could be used in the continuity equa- 
tion because the p u  and p v  terms that appear are evaluated at time n + l. This 
equation is effectively implicit but could be evaluated explicitly since (pu)"+l and 
(pv)"+1 were known andpn+l was to be determined. This technique is conditionally 
stable and conserves mass identically on a numerical grid. 

The difference operators for a cell adjacent to a wall must have a special form. 
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TABLE 1. Finite-difference approximations 

The technique employed here consists of obtaining a value at  a cell boundary by 
averaging over two adjacent cells and then differencing across the cell. For 
example 

is used to compute af/ax for the i = 1 cells. This form assumes that f$j is pre- 
scribed along x = 0. This form is thus used for the pu and pv differences for all 
cells adjacent to walls and for the T differences for cells adjacent to the left and 
right walls. The T differences for cells adjacent to the upper and lower walls are 
obtained by calculating a cell boundary gradient (TC2 -T?J/Ay  and then 
averaging with the known zero gradient at the adiabatic wall. The pressure 
differences for a cell adjacent to a wall are obtained by using quadratic extrapola- 
tion to obtain the pressure at the wall and then using central differences to 
calculate gradients. 

This explicit finite-difference method for solution of the compressible flow 
equations is a conditionally stable technique. A restriction is imposed on the size 
of the time step At to ensure numerical stability. The criterion for At was found 
by numerical experimenta,tion since a rigorous stability analysis for such complex 
equations is beyond the state of the art. The most restrictive time step was found 
to be given by the hyperbolic limit (Richtmyer & Morton 1967, p. 323), which 
expressed in the dimensionless variables is 

?flyax = [ W G  +f$, -f,”j/Ax (11) 

At < A/(Zyl;,)&, (12) 

where A is the smallest grid spacing in the network and Th is the largest tempera- 
ture. This value represents essentially the time required for a wave to move 
a distance of one cell width. In  real time this corresponds to time steps of the order 
of 10-3s. For problems requiring several seconds of simulation, this is not 
severely restrictive for current computer systems. A time-scaling procedure is 
used to reduce the computer run time for problems requiring long simulation 
times such as obtaining steady-state solutions. The time-scaling method, which 
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is based on similarity principles, was originally proposed by Heinmiller (1970) and 
details of its application to this problem are given by Spradley et al. (1973). 

The algorithm used for the computations can be summarized as follows. 
(i) Given conditions at each grid point at time n, the products pu and pv are 

(ii) The products pu and pv at time n + I are used in (3) to obtain the density p 

(iii) The temperature T a t  n + I is now calculated from (4) using the value 

(iv) The pressure P a t  time n + 1 is evaluated explicitly using (j), and the 

(v) The process is repeated until t = t,,, or until a steady state is reached. 
A computer program using FORTRAN V was developed to implement this 

advanced to time n + 1 using (1) and (2), respectively. 

a t  time n + 1. 

just computed for pn+l. 

velocity components u and v are obtained from the pu, pv and p calculations. 

numerical algorithm on the Univac 1108 multiprocessor system. 

4. Discussion of results 
Results of illustrative calculations are presented here and others may be found 

in reports by Spradley et al. (1973) and Bannister et al. (1973). The objective of 
the sample calculations presented here is (i) to  verify the numerical method by 
comparison with previous solutions, (ii) to illustrate the general effects of a vari- 
able density profile, (iii) to show the unsteady effects of pressure convection on 
the isotherms, and (iv) to present a complete steady-state map of the flow field 
for a representative case. The first case consists of a one-dimensional simulation 
of a zero-gravity problem for comparison with the solutions of Larkin (1967) and 
Thuraisamy (1972). The second case consists of buoyancy-driven natural convec- 
tion for comparison with the results of Wilkes & Churchill (1966). The third case 
is for unsteady convection in a container of helium gas a t  varying levels of 
gravity, 

Convergence of the numerical solutions was established for all cases by com- 
paring results for different grid spacings. Extrapolation of the results for selected 
cases for 10 x 10, 20 x 20 and 30 x 30 grids to zero grid spacing confirmed con- 
vergence of the numerical scheme. The steady-state results for the 10 x 10 grid 
differed by less than 4 % from the extrapolated values for the Nusselt number and 
by less than 6 % for the temperature, density and velocity a t  the centre of the 
grid. The results for the 20 x 20 grid differed by less than 1 % from the extra- 
polated values and the results for the 30 x 30 grid differed negligibly. In  the 
interest of computational economy the calculations were generally carried out 
only for a 10 x 10 grid and the results presented here are for such a grid unless 
specified otherwise. The use of a conservative finite-difference scheme is believed 
to be responsible for the reasonable accuracy of the solutions for such a coarse 
grid as discussed by Torrance et al. (1972). The dependence of the solutions on At 
was also checked by using different step sizes until significant changes in the 
unsteady profiles were no longer apparent. Dimensionless values of the order of 
0.01 were found to be the best compromise of accuracy and machine time. Test 
calculations were also carried out for the initial period using a scheme of Dufort- 
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Distance, x 

FIGURE 3. Temperature us. x at y = 0.5 for t = 1000. ---, conduction; 
- , convection; --, steady state; 0, Larkin; A ,  Thuraisamy. 

Prankel type. The results are in excellent agreement. The steady-state solutions 
presented here required an average of I0  min of computer processing units on 
the Univac 1108 system. 

The first example was chosen to verify the technique for a zero-gravity problem 
and to investigate the effects of pressure convection in the absence of buoyancy. 
This problem has been solved by Larkin (1967) and Thuraisamy (1972) and is 
described in detail by Spradley (1973). The problem consists of one-dimensional 
flow of helium gas between parallel plates. The fluid motion is driven entirely by 
pressure gradients induced by the thermal boundary conditions. The one- 
dimensional situation is simulated here by using a large aspect ratio 7 = 100 and 
by setting g = 0 and v = 0. The thermal boundary conditions consist of TL = 2 
and TB = 1 with the dimensionless groups Re = 1.2 x los, Pr = 0.685 and 
y = 1-67. The solution was marched forward in time until the one-dimensional 
motion was highly damped and the temperature closely approached the steady- 
state form T = 2 - x. The profile of T vs. x at t = 1000 is compared in figure 3 with 
the results of Larkin and Thuraisamy. Excellent agreement is apparent. This 
figure also illustrates that pressure-driven convection is an effective mechanism 
of heat transfer. The solution has almost reached a steady state at  t = 1000 while 
for pure conduction the heat has penetrated into only 20 % of the region. The 
pressure profile was found to converge to the constant steady-state value of 1-44 
as the velocity waves damped out. This one-dimensional simulation shows that 
the solution scheme can adequately calculate the flow profiles in the absence of 
buoyancy. 

The second example consists of the calculation of the steady-state profiles for 
buoyancy-driven flow in a rectangular region as considered by Wilkes & Churchill 
(1966). Their configuration and the boundary conditions are identical to those in 



714 L. W .  Spradley and 8. W .  Churchill 

FIGURE 4. Steady-state temperature and stream-function maps for comparison with solution 
of Wilkes & Churchill. (10 = max, 1 = min.) (a) Contours of T: min = 0.518, max = 1.47. 
( b )  Contours of 11.: min = 2.0 x max = 1.02 x 10-5. 

the present formulation. An exact simulation is not possible since the present 
solution includes pressure effects and a variable density profile. Qualitative com- 
parison is possible, however, and should serve to verify the procedure. The 
thermal boundary conditions are TL = 0.5 and TR = 1.5. The dimeiisionless 
parameters (Re, Fr, etc.) were chosen to produce a Grashofnumber Gr = 2-0 x 104, 
Prandtl number Pr = 0.733 and an aspect ratio 7 = 1.0, which simulates the 
problem of Wilkes & Churchill. The solution was marched forward in time until 
a steady state was attained. I n  this procedure the velocity profiles are combined 
according to the classic definition to produce the stream function $: 

a$px = -pv 7 a$/%/ =pu. (13) 

A sub-program then maps the flow contours using the line printer. The minimum 
and maximum values of the stream function are mapped as 1 and 10 respectively 
with intermediate values a t  equal increments mapped onto 2-9 (even numbers 
are mapped with blanks for clarity). The contour maps correspond to the cell- 
centred grid in figure 2 .  No extrapolation is made to the walls, thus the maps do 
not show a minimum $ = 0 since the wall conditions are not mapped. The 
boundary condition $ = 0 is used, however, to solve for the stream function from 
the calculated velocity profiles. The tick marks on the contour maps correspond 
to the centre of a cell where all calculations were made. 

Figure 4 gives the steady-state maps of the temperature and stream function 
for the problem of Wilkes 8: Churchill. The isotherms agree in both shape and 
magnitude with the calculations presented in their figure 5. (The isotherm T = 1 
in the present solution corresponds to T = 0 in theirs.) The stream-function maps 
have the same basic shape as those in their figure 6 but are skewed somewhat 
towards the cooler regions o f  the fluid, i.e. to the left and bottom of the container. 
This is a direct result of the variable density, which produces a different buoyancy 
in the cold and hot regions giving the asymmetry shown. The magnitudes of the 
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FIGURE 5. Steady-state temperature and stream-function maps illustrating variable-density 
effects. (10 = max, 1 = min.) ( a )  Contours of T: min = 0.528, max = 1.46. (b)Contoursof yk 
min = 1.68 x max = 4.07 x lo-'. 

stream functions showii in figure 4 are considerably different owing to the dif- 
ferent reference velooity used here, but when these values are converted to the 
form used by Wilkes & Churchill, the agreement in magnitude is excellent. The 
present calculations give values of @ which are on average 40 % larger in some 
regions and 25 yo smaller in other regions. This apparent discrepancy is under- 
standable, however, since the definition of the stream function used in (13) is for 
variable-density flow and the density variations range from 1-4 to 0.7. 

Further verification is evident from the steady-state Nusselt number. The 
average Nusselt number is obtained by integrating aT/az along the walls 
x = 0 and x = 1. Wilkes & Churchill give = 2.87 for a 10 x 10 grid and 
Nu = 2.52 for a 20 x 20 grid. Steady-state values of 2.69 and 2.63 were obtained 
with the present analysis using 10 x 10 and 20 x 20 grids, respectively. This close 
agreement suggests that the density variations do not appreciably affect the 
steady-state Nusselt number. The isotherms were also affected very little by the 
variable density. 

Further investigation was made of the effects of variable density on the orienta- 
tion of streamlines and isotherms. The Wilkes & Churchill configuration was used 
but with a gravity level g = 0.1, which reduces Gr to 2.0 x lo3. The same boundary 
conditions and dimensionless groups were used except for the Froude number, 
which is now based on g = 0.1. Figure 5 shows the steady-state maps for this case. 
The temperature retains an almost symmetric character, but the stream function 
is even more asymmetric than in the case g = 1.0 (figure 4). The thermal boundary 
conditions should produce nearly symmetric streamlines under the Boussinesq 
approximation, but the variable density employed here results in buoyancy of 
different magnitude in the cold and hot regions of the fluid since p does not depend 
on AT alone. This effect appears to  be more pronounced for lower gravity levels, 
i.e., larger Froude numbers, as may be seen by comparing figures 4 and 5. 

- 
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FIGURE 6. Velocity and pressure vs. time at initiation of motion. 
(Z = 0.5, y = 0.45.) 

The third case considers the flow of helium gas in a rectangular container to 
illustrate the combined effects of buoyancy- and pressure-driven convection. 
The fluid is assumed to be initially motionless with initial conditions TI, = 273 OK 
and PI, = 1-08 x 106 dyne/cm2. The thermal boundary conditions are T' = 2.0 
and TR = 1.0, with the following governing parameters: 

'1 = 1.0, Re = 2-07 x 105, Pr = 0,685, y = 1-67, 

The Froude number is varied to investigate the effects of different gravity levels. 
The motion is initiated a t  the left wall (x = 0) as the fluid expands upon being 

heated. The thermally induced waves propagate in the +x direction and are 
subsequently reflected from the wall x = 1. The motion a t  early times is driven 
by the aP/ax term in the x-momentum equation and is one-dimensional. Figure 6 
shows the x component of velocity and the pressure m. time a t  the location 
z = 0.5, y = 0.45 in the container. The waves have the local acoustic period 
2/(yT)%. The velocity amplitudes are approximately 0-02 of sonic a t  the initiation 
of motion but are damped rapidly with time. The pressure waves are seen t o  
follow the velocity with twice the effective frequency. This is due to the effects 
on pressure of both left- and right-running velocity waves. This early motion is 
one-dimensional and is identical to the solution reported by Spradley (1973). 

Figure 6 indicates that a t  short times Mach numbers of the order of 10-2 are 
attained, corresponding to flow Reynolds numbers Re, N lo3. This value is on 
the borderline for validity of the numerical calculations but is quickly reduced 
to Re, N 102. As time proceeds the pressure waves are highly damped, buoyancy 
becomes the dominant mechanism and the Grashof number influences numerical 
stability. The computed values Gr - 2 x lo4 are well within the allowable range. 
To study further the resolution of the solutions, additional calculations were 
carried out for ten times the viscosity, thus decreasing Re, by a factor of 10. Four 
cases were analysed: (i) Be, N lo3 for a 10 x 10 grid; (ii) Re, - 103 for a 30 x 30 
grid; (iii) Re, N lo2 for a 10 x 10 grid; (iv) Re, - lo2 for a 30 x 30 grid. The term 
resolution is defined herein as the percentage difference in the solution profiles 

I+ = 2-15 x lo6 (based on g = 1.0). 



Pressure- and buoyancy -driven thermal convection 717 

Y 

9 5 .  
7 3  

Y 

' Y  Y 

FIUURE 7. Temperature maps at  t = 20 illustrating the effects of buoyancy- and pressure- 
driven convection. (10 = max, 1 = min.) (a)  Conduction only: rnin = 1.0, max = 1.67. 
( b )  g = 0:  rnin = 1.0, max = 1.89. (c) g = 0.01: rnin = 1.0, max = 1.92. ( d )  g = 1.0: 
rnin = 1.0, max = 1.95. 

obtained using two different grid sizes. A comparison of cases (i) and (ii) for all 
flow variables showed an average resolution of - 6%. A comparison of cases 
(iii) and (iv) for all flow variables showed an average resolution of N 4 yo. This 
indicates that the resolution becomes poorer as Re, increases. The small relative 
difference between the comparisons lends further validity to use of the coarse 
grid for the cases Re, N lo3. Further, a comparison of cases (i) and (iii) indicates 
that numerica,l diffusion is not overshadowing real diffusion. 

As time progresses, density gradients develop and give rise to buoyancy forces. 
Gravity-driven natural convection begins to cause circulation of the flow, which 
is now driven by both the pressure-gradient term and the body-force term in the 
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FIGURE 8. Mean Nusselt numbor 'us. time. -, g = 1; --, g = 0.01; -----, g = 0. 

y-momentum equation. To investigate the relative strength of these driving 
mechanisms, four cases were run and maps of the isotherms were prepared at 
t = 20. These four cases, presented as figure 7, were the following: (a)  conduc- 
tion only; ( b )  convection for g = 0, i.e. pressure convection only; ( c )  combined 
convection for g = 0.01; (d )  combined convection for g = 1-0. 

Figure 7 (a)  shows that the T = I isotherm still occupies about 85 % of the 
region for conduction only. Figure 7 ( b )  shows the effectiveness of pressure-driven 
convection in transferring heat from the wall x = 0. The T = 1 isotherm now 
occ.upies about 50 yo of the region as heat is transferred from the wall through the 
fluid by the induced wave motion as well as by conduction. Figure 7 (c) shows the 
combined effect of buoyancy- and pressure-driven convection. We can analyse 
this effect by examining the position of the T = I isotherm. At the bottom of the 
region, the T = I isotherm is to the right of its position in the pure conduction 
case and to the left of that in the case g = 0. This shows that pressure-driven 
convection for g = 0.01 is still effective in transferring heat in the x direction but 
is not as effective as in the g = 0 case. This is, of course, due to the buoyancy, 
which moves a portion of the hot fluid to the top of the region. Now note that the 
position of the T = 1 isotherm a t  the top of the region is to the right of that in 
figure 7 (b) .  The buoyancy-driven flow is thus transferring heat from the bottom 
of the container to the top by natural convection. Both driving mechanisms are 
thus influencing the unsteady temperature profile significantly for g = 0.01. 

Figure 7 (a) gives the temperature map for g = I. Again a comparison of the 
T = 1 isotherm illustrates the relative strength of the driving forces. I n  figure 
7 ( d )  we see that this isotherm is to the left of the one in figure 7 ( c )  at the bottom 
and to the right at the top of the region. In  fact, the T = 1 isotherm a t  the bottom 
of figure 7 ( d )  is somewhat left of that shown in figure 7 (a)  for pure conduction. 
At the top of the region, the T = 1 isotherm in figure 7 (d )  is considerably to  the 
right of that in any of the other cases. This is due to the dominance of buoyancy- 
driven convection for g = I. For this configuration, fluid and boundary con- 
ditions, i t  is apparent that (i) pressure-driven convection is dominant in 
transferring heat at very low gravity, (ii) both pressure- and buoyancy-driven 
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FIGURE 9. Steady-state contours for helium problem. (10 = max, 1 = min, g = 1.) 
( a )  Temperature: min = 1.02, max = 1.97. ( b )  Stream function: min = 1.1 x lO-lO, max = 
5.9 x 10-5. (c) Density: min = 0.716, max = 1.42. (d )  Tot,al-pressure deviation from mean of 
1.431: each band = 2 x lo4. 

convection contribute significantly to the transient heat transfer at  g = 0.01, 
and (iii) buoyancy-driven convection is the dominant mechanism at g = 1.0. 

Figure 8 shows the mean Nusselt number as a function of time for the three 
cases. The mean value Nywas calculated by integrating the temperature gradient 
i?T/ax over all grid points a t  the left wall. The convergence to a steady state is 
indicated by the approach of to  a constant value. - The steady-state value is 
Nu = 2-12 for g = 1, Nu = 1-09 for g = 0.01 and Nu = 1-0 for g = 0. Figure 9 
gives the steady profiles of the temperature, stream function, density and total 
pressure. The temperature and stream-function maps are similar in shape to the 
steady forms produced by numerical investigations of natural convection. The 
magnitudes appear to be very reasonable for the configuration, dimensionless 
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parameters and boundary conditions used. Density and total-pressure maps are 
not often seen in the literature on natural convection owing to the Boussinesq 
approximation. They are presented here t o  illustrate the total-solution profiles 
for a variable-density analysis. The density is seen to vary by a factor of approxi- 
mately two between the minimum and maximum values. The mean pressure rise 
P, in the container is calculated to be 1-431 in the steady state. The pressure 
gradients which exis$ in the steady state are shown in figure 9(d).  These are 
mapped as contours of P-P, with each band representing a deviation of 
2.0 x from the mean value. The gradients are thus relatively small in magni- 
tude in steady-state conditions but the contour map does show an interesting 
fact. The largest pressure gradients are in the vertical direction with much smaller 
gradients in the horizontal direction. The vertical gradients include both the 
static and dynamic components while the horizontal gradients consist of just 
a dynamic Component. We can conclude, for this g = 1 case, that steady-state 
total-pressure gradients are small and that steady-state dynamic-pressure 
gradients do exist but are much smaller than the static component. 
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